Fuente: WUSTL Top News Stories
Expuesto el: martes, 12 de junio de 2012 23:00
Autor: Caroline Arbanas
Asunto: Census of microbes in healthy humans reported
The bacterium Enterococcus faecalis, which lives in the human gut, is just one type of microbe that was studied as part of the Human Microbiome Project funded by the National Institutes of Health (NIH). Trillions of microbes inhabit the human body, occupying virtually every nook and cranny. And most of the time, this relationship is a friendly one, with microbes helping to digest food, strengthen the immune system and ward off dangerous pathogens. “Our bodies are part of a microbial world,” says Weinstock, who also is a professor of genetics and microbiology. “You can think of our ecosystems like you do rain forests and oceans, very different environments with communities of organisms that possess incredible, rich diversity.” Using new genomic techniques, Genome Institute scientists including Erica Sodergren, PhD, research associate professor of genetics, and Makedonka Mitreva, PhD, research assistant professor of genetics, took an inventory of the microbes in the samples by sequencing a gene found in all microbes. “This gene, 16S rDNA, serves as a barcode of life to indicate which species are there and their prevalence in the microbial community,” Sodergren says. The Genome Institute team also sequenced the DNA of entire microbial communities in a subset of samples. “With this information, we could identify viruses, fungi and other non-bacterial organisms and put together a catalog of all the genes present in the samples,” Mitreva says. The researchers noted unique communities of microbes in every site in the body. Interestingly, the microbial communities that live on the teeth are different from those in saliva. And the most diverse collection of microbes was found to live on the skin, which might be expected because it is the body’s barrier to the outside world. The scientists also reported that the body’s collection of microbes contributes more gene activity than humans themselves. While the human genome includes some 22,000 genes, it’s a mere fraction of the 8 million genes that are part of the human microbiome. These microbial genes are critical to good health. Those in the gastrointestinal tract, for example, allow humans to digest foods and absorb nutrients that our bodies otherwise could not handle. Microbial genes also produce vitamins and compounds that naturally suppress inflammation in the intestine. Also, confirming earlier, smaller studies, the new research shows that components of the human microbiome clearly change during an illness. When a patient is sick or takes antibiotics, the species of the microbiome may shift substantially as one bacterial species or another is affected. Eventually, however, the microbiome settles into a state of equilibrium, even if the previous composition is not completely restored. As part of the Human Microbiome Project, the NIH funded a number of studies to look for links between particular communities of microbes in the body and illness. Results of some of this research, reported in PLoS, underscore the clinical applications of microbiome research to improve human health. At Washington University, researchers led by Gregory A. Storch, MD, the Ruth L. Siteman Professor of Pediatrics, examined the microbes in the noses and blood of children who developed sudden, high fevers that couldn’t be traced to a specific cause. Unexplained fever is a common problem in children under age 3, and they are often treated with antibiotics as a precaution, which contributes to antibiotic resistance. Storch and his colleagues, including Kristine Wylie, PhD, a postdoctoral research associate at The Genome Institute, found that specimens from the sick kids contained more species of viruses, some of them novel, than children without fever, who also were included in the study as a comparison. Fever may be part of the body’s defense against disease-causing viruses, but the researchers also showed that children without fever carried viruses, though in lower numbers. Understanding the difference between viral infections with and without fever will be important in applying microbiome techniques in the clinic, the scientists say. In another project, Weinstock and his Genome Institute colleagues, along with Katherine Pollard, PhD, and her team at the University of California, San Francisco, identified previously unknown microbial taxa in stool samples from 11 healthy individuals. While these new, not-yet-named microbes were found in relatively low levels, the research indicates they may be quite common because they were found in multiple volunteers. And in research at St. Louis Children’s Hospital, Phillip Tarr, MD, the Melvin E. Carnahan Professor in Pediatrics, and neonatologist Barbara Warner, MD, professor of pediatrics, and others are investigating whether a life-threatening gastrointestinal illness in premature babies is linked to microbes in the intestinal tract. Necrotizing enterocolitis affects about 10 percent of premature babies, usually in the first month of life, and is fatal in 15 percent to 30 percent of cases. The researchers are collecting stool samples from premature babies to identify and quantify differences between the microbial communities of the infants who develop the illness and those who don’t. This information may provide a foundation for developing ways to prevent or cure the illness. “The future of microbiome research is very exciting,” Weinstock says. “This large-scale effort will open doors in many areas of medicine to improve our understanding of good health and the treatment and prevention of disease.” The research is funded by the National Institutes of Health (NIH) Common Fund. NIH grant numbers include: U54HG004968 and R01HG004872. Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.
|